FDNE Component Input Data File Formats

 

The following sections discuss the types of input accepted, as well as the data input formats for the frequency-dependent network equivalent (FDNE) model.

Input Data Types

There are multiple different types of input data accepted.

From Harmonic Impedance Component

This is simply data from the Interface to Harmonic Impedance Solution component output file (ex. Harm.out). Please note however, that the Interface to Harmonic Impedance Solution component must be configured as follows in order to provide the data in the format needed:

Impedance parameters

The input data file contains the impedance of a multi-port network as a function of frequency.

Scattering parameters

If the scattering parameters data of the network is available, this option can be used. The reference impedances must be provided in the input data file.

Admittance parameters

The input data file contains the admittance of a multi-port network as a function of frequency.

Admittance as ABCD parameters

The input data file contains the admittance of a multi-port network expressed in state space form. The state space realization of the admittance can be written as:

 

 

For N port system, A is a complex NS x NS matrix, B is a real NS x NC matrix, C is a complex NC x NS matrix, D is a real NC x NC matrix and E is a real NC x NC matrix.

Scattering as ABCD parameters

The input data file contains the scattering parameters of a multi-port network expressed in state space form.

Sequence Parameters

The input data file contains the sequence parameters of a multi-port network as a function of frequency.

Input Data Type File Formats

Example formats are given below for each input data type.

From Harmonic Impedance Component

The input file format coming from the Interface to Harmonic Impedance Solution is already formatted as required, provided that the parameter settings are set as described above. For more details on this input file format, see HIS Output File Format.

Impedance parameters

An input data file containing the impedance of a multi-port network, as a function of frequency must conform to the following format:

 

! Optional comment lines (must begin with '!')

! Enter the total ports (ex. NP=2), then the total frequency samples

! (ex. NF=501)

2

501

! For each frequency sample, enter the impedance matrix in rectangular

! format Real(Z) Imag(Z).

!

! Example:

!

! f(1)

! Real(Z(1,1)) Imag(Z(1,1))

! Real(Z(1,2)) Imag(Z(1,2))

! Real(Z(1,3)) Imag(Z(1,3))

! Real(Z(2,1)) Imag(Z(2,1))

! Real(Z(2,2)) Imag(Z(2,2))

! Real(Z(2,3)) Imag(Z(2,3))

! ...

! Real(Z(NP,NP)) Imag(Z(NP,NP))

! f(2)

! ...

10.0000000000000     

   0.174850482412908E+01       -0.795734349663449E+04

  -0.207109997339879E-02        0.628728922650845E+00

  -0.207109997339877E-02        0.628728922650845E+00

   0.100096933317287E-01        0.132051171216790E+01

10.1859138805412

...

Admittance parameters

The input data file contains the admittance of a multi-port network as a function of frequency. This is the same format as Impedance Parameters above; simply swap Y matrix values for Z matrix values.

Scattering parameters

An input data file containing the scattering parameter data of a multi-port network must conform to the following format:

 

! Optional comment lines (must begin with '!')

! Enter the total ports (ex. NP=2), then the total frequency samples

! (ex. NF=501)

2

501

! A reference resistance must be provided for each port. In this example,

! The number of ports is NP=2, therefore two resistances are provided:

!

! Example:

!

! R(1)

! R(2)

! ...

! R(NP)

!

100.0

100.0

! Example:

!

! f(1)

! Real(S(1,1)) Imag(S(1,1))

! Real(S(1,2)) Imag(S(1,2))

! Real(S(1,3)) Imag(S(1,3))

! Real(S(2,3)) Imag(S(2,3))

! ...

! Real(S(NP,NP)) Imag(S(NP,NP))

! f(2)

! ...

10.0000000000000     

   0.999678657861817E+00       -0.251299069941465E-01

  -0.157942496334932E-03        0.358519576184203E-05

  -0.157942496334932E-03        0.358519576184196E-05

  -0.999451209037746E+00        0.264013378058848E-01

10.1859138805412

...

Admittance as ABCD parameters

An input data file containing the admittance data as ABCD parameters must conform to the following format:

 

! Optional comment lines (must begin with '!')

! Enter the total ports (ex. NP=2), then the total number of states (i.e.

! the dimension of the A matrix (ex. NS=68).

2

68

! Enter the real and imaginary parts of the A matrix, then the B matrix, then

! the C, D and E matrices.

!

! Example:

!

! A MATRIX (COMPLEX)

!

! Real(A(1,1)) Imag(A(1,1))

! ...

! Real(A(NS,NS)) Imag(A(NS,NS))

!

! B MATRIX (REAL)

!

! Real(B(1,1))

! ...

! Real(B(NS,NS))

!

! C MATRIX (COMPLEX)

!

! Real(C(1,1)) Imag(C(1,1))

! ...

! Real(C(NS,NS)) Imag(C(NS,NS))

!

! D MATRIX (REAL)

!

! Real(D(1,1))

! ...

! Real(D(NS,NS))

!

! E MATRIX (REAL)

!

! Real(E(1,1))

! ...

! Real(E(NS,NS))

!

! A MATRIX

  -0.476190498813596E+00        0.000000000000000E+00

  -0.344849891474060E+04        0.000000000000000E+00

  ...

! B MATRIX

  0.100000000000000E+01         

  0.000000000000000E+00        

  ...

! C MATRIX

  -0.281633348985801E-14        0.000000000000000E+00

   0.264927919633754E-11        0.000000000000000E+00

  ...

! D MATRIX

   0.833333333333331E-01

  -0.144142218102473E-15

  ...

! E MATRIX

  0.000000000000000E+00

  0.000000000000000E+00

  ...

Scattering as ABCD parameters

An input data file containing the scattering data as ABCD parameters must conform to the following format:

 

! Optional comment lines (must begin with '!')

! Enter the total ports (ex. NP=2), then the total number of states (i.e.

! the dimension of the A matrix (ex. NS=68).

2

68

! A reference resistance must be provided for each port. In this example,

! The number of ports is NP=2, therefore two resistances are provided:

!

! Example:

!

! R(1)

! R(2)

! ...

! R(NP)

!

100.0

100.0

! Enter the real and imaginary parts of the A matrix, then the B matrix, then

! the C, D and E matrices.

!

! Example:

!

! A MATRIX (COMPLEX)

!

! Real(A(1,1)) Imag(A(1,1))

! ...

! Real(A(NS,NS)) Imag(A(NS,NS))

!

! B MATRIX (REAL)

!

! Real(B(1,1))

! ...

! Real(B(NS,NS))

!

! C MATRIX (COMPLEX)

!

! Real(C(1,1)) Imag(C(1,1))

! ...

! Real(C(NS,NS)) Imag(C(NS,NS))

!

! D MATRIX (REAL)

!

! Real(D(1,1))

! ...

! Real(D(NS,NS))

!

! E MATRIX (REAL)

!

! Real(E(1,1))

! ...

! Real(E(NS,NS))

!

! A MATRIX

  -0.544700620883931E+04        0.000000000000000E+00

  -0.642728354625963E+04        0.000000000000000E+00

  ...

! B MATRIX

  0.100000000000000E+01         

  0.000000000000000E+00        

  ...

! C MATRIX

  -0.191041812478370E-05        0.000000000000000E+00

   0.136037692862328E-03        0.000000000000000E+00

  ...

! D MATRIX

  -0.785714285714284E+00

  -0.799843438618597E-15

  ...

! E MATRIX

  0.000000000000000E+00

  0.000000000000000E+00

  ...

Sequence Parameters

An input data file containing the sequence parameter data must conform to the following format:

 

! F1, real(Zpos1), imag(Zpos1), real(Zzero1), imag(Zzero1)

! F2, real(Zpos2), imag(Zpos2), real(Zzero2), imag(Zzero2)

! F3, real(Zpos3), imag(Zpos3), real(Zzero3), imag(Zzero3)

! F4, real(Zpos4), imag(Zpos4), real(Zzero4), imag(Zzero4)

! ...

! Where,

!

! Fi = Frequency [Hz]

! Real(Zposi), imag(Zposi) = Real and imaginary parts of positive sequence                     !                            impedance at frequency Fi.

! Real(Zzeroi),imag(Zzeroi)= Real and imaginary parts of zero sequence

!                            impedance at frequency Fi.

!

1.00,0.677,0.178,1.134,1.465

4.00,0.581,0.3454,1.234,2.2345

7.00,0.596,0.5345,2.5562.6435

10.00,0.601,0.746,3.788,2.745

...

Power and Current Injection File Formats

Powerflow maintenance can be accomplished by either power or current injections.

Power Injections

This file is used to define voltage, angle, active and reactive power at terminals of the FDNE. Harmonics can be added as well by defining terminal conditions at different frequencies.

 

! Comment line

NC   ! Number of ports (should match FDNE interface ports)

NF   ! Number of power injections at different frequencies

0.1  ! Ramp time

F1   ! Frequency

V1    Angle1  P1  Q1                    ! V, angle P,Q for port 1 for frequency F1

V2    Angle2  P2  Q2                    ! V, angle P,Q for port 2 for frequency F1

V3    Angle3  P3  Q3                    ! V, angle P,Q for port 3 for frequency F1

F2   ! Frequency

V4    Angle4  P4  Q4                    ! V, angle P,Q for port 1 for frequency F2

V5    Angle5  P5  Q5                    ! V, angle P,Q for port 2 for frequency F2

V6    Angle6  P6  Q6                    ! V, angle P,Q for port 3 for frequency F2

...

 

Alternatively if the current injections at the terminals of the FDNE are available, this can be directly entered.

Current Injections

This file is used to define voltage, angle, active and reactive power at terminals of the FDNE. Harmonics can be added as well by defining terminal conditions at different frequencies.

 

! Comment line

NC   ! Number of ports (should match FDNE interface ports)

NF   ! Number of power injections at different frequencies

0.1  ! Ramp time

F1   ! Frequency

Mag1   Angle1                         ! Magnitude and angle for port 1 for frequency F1

Mag2   Angle2                         ! Magnitude and angle for port 2 for frequency F1

Mag3   Angle3                         ! Magnitude and angle for port 3 for frequency F1

F2   ! Frequency

Mag4   Angle4                         ! Magnitude and angle for port 1 for frequency F2

Mag5   Angle5                         ! Magnitude and angle for port 2 for frequency F2

Mag6   Angle6                         ! Magnitude and angle for port 3 for frequency F2

...

Units

The units used are as follows:

 

 

Description

Unit

Frequency

 

Hz

V

Magnitude of voltage at each terminal (port). RMS, port to ground.

kV

Angle

Angle of the voltage (with respect to sinusoidal waveform).

Deg.

P

Per port.

MW

Q

Per port.

MVAr

Ramp Time

Ramp time of the current sources.

Seconds

Mag

Magnitude of the current (RMS).

kA

Ang

Angle of the current.

Deg.