

Statistical Breaker Component

For PSCAD Version 5.0

January 30, 2020 Initial

Powered by Manitoba Hydro International Ltd. 211 Commerce Drive Winnipeg, Manitoba R3P 1A3 Canada mhi.ca

CONTENTS

1.	OVERVIEW	. 1
2.	PSCAD/EMTDC EXAMPLE DESCRIPTION	. 2
	2.1. Example 1: Statistical Breaker Operation	2
	2.1.1. Example 1.1: Impact of Min and Max Time Delay	3
	2.1.2. Example 1.2: Impact of Number of Standard Deviation	4
	2.1.3. Example 1.3: Interpreting the Output seed value and how to reuse it	5
	2.2. Example 2: Line Re-energizing	8

Statistical Breaker Component

1. OVERVIEW

In probability theory, the normal (or Gaussian) distribution is a continuous probability distribution, defined by,

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$
(1)

Where,

 $\mu :$ The mean of the distribution

 σ : The standard deviation

The normal distribution is an important statistical distribution which is often used to describe, at least approximately, any variable that tends to cluster around the mean. Figure 1 demonstrates the normal distribution curve. The Y-axis is the probability, and the X-axis is the samples generated randomly (closing time for the breaker) around the mean.

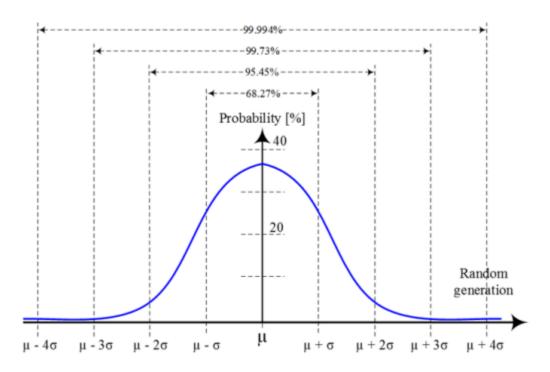


Figure 1: Normal Statistical Generation of Sample Closing Time for Breaker

Statistical Breaker Component

2. PSCAD/EMTDC EXAMPLE DESCRIPTION

2.1. Example 1: Statistical Breaker Operation

The purpose of this example is to demonstrate how Statistical Breaker component performs. In this example, the highlighted section in <u>Figure 2</u> is connected to Multiple Run to demonstrate how the close signals of statistical breaker vary at different point of wave.

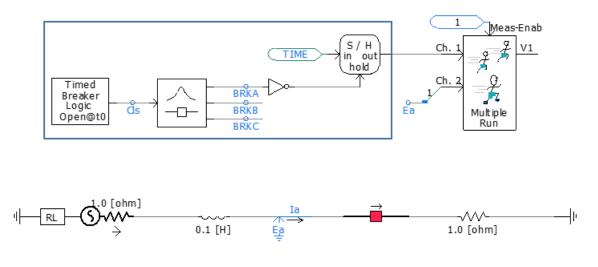


Figure 2: Network Configuration for Example 1

The input "Cls" is breaker closing command signal. The outputs (BRKA, BRKB and BRKC) are signals to control the breaker's operation ("1" =breaker open, "0"=breaker closed).

The statistical breaker is meant to be used in the single-pole operation of a 3-phase breaker, in a statistically distributed manner.

Once a breaker closing command signal (Cls) is received on its input, the statistical breaker will generate three individual breaker close status signals within the minimum and maximum delay.

2.1.1. Example 1.1: Impact of Min and Max Time Delay

<u>Table 1</u> summarizes the statistical breaker's parameter to demonstrate the impact of minimum and maximum time delay.

Table 1: Summary of statistical breaker's parameters

	Case 1	Case 2
Mean Time	0.102s	0.1075s
Min Time Delay	0.1s	0.106s
Max Time Delay	0.104s	0.11s

Figure 3 indicates the probability distribution curves always in between Min and Max time delay.

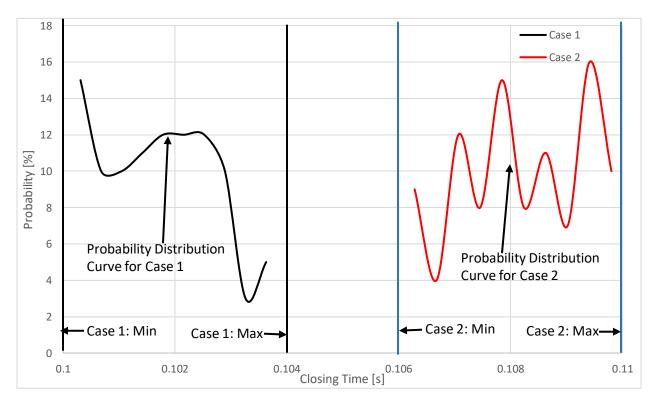


Figure 3: Probability of closing time for 100 runs

2.1.2. Example 1.2: Impact of Number of Standard Deviation

Figure 4 depicts the impact of standard deviation.

Table 2: Summary of statistical breaker's parameters

	Case 1	Case 2
Mean Time	0.102s	0.102s
Number of Standard Deviation	1	4
Min Time Delay	0.1s	0.1s
Max Time Delay	0.104s	0.104s
2% Level	0.1007s	0.1007s
98% Level	0.1034s	0.1034s

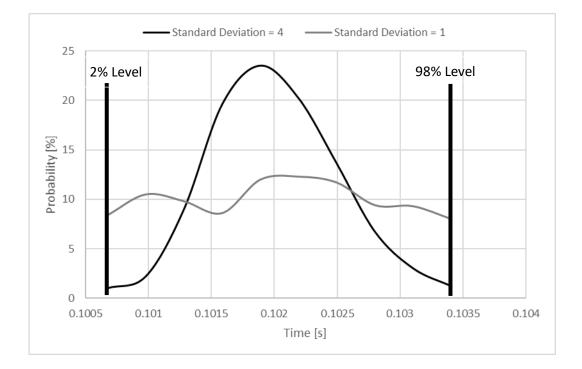


Figure 4: Distribution of Random Closing Time for Different Standard Deviation and 1000 runs

2.1.3. Example 1.3: Interpreting the Output seed value and how to reuse it

The statistical breaker is used to generate the random breaker's closing time with a unique seed value for the associated closing time. The seed value can then be used to re-create the waveforms previously generated by the statistical breaker. The following steps demonstrate how to re-use seed values,

1. Enter a name for the seed value (i.e. Seedvalue).

Con	Configuration		
8≞ ≵↓ 🕾 📑 🛷 🕸			
~	General		
	Name		
	Initial seed value	0	
	Minimum time delay	0	
	Maximum time delay	0.004	
	Number of standard deviations in the interval	1	
~	Outputs		
	Seed value used	Seedvalue	

Figure 5: Configuration of Statistical Breaker

2. Connect the Seed value to the input channel of Multiple Run.

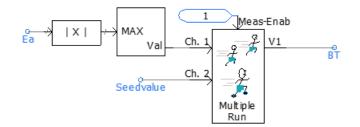


Figure 6: Configuration of multiple run

3. Run the simulation. The Seed value will be recorded in the output file

Multiple	Run Output File		
Run #	BT	Ea	Seedvalue
1	0.500000000	291.6380234	539331737.0
2	0.5008000000	398.1539741	574668345.0
3	0.5016000000	344.9883012	610004875.0
4	0.5024000000	403.3505346	645341391.0
5	0.5032000000	241.4127988	716013279.0
6	0.5040000000	390.9386678	751349887.0
7	0.5048000000	390.4651129	786686417.0

- 4. For instance, try to re-create Run #4 with seed value of 645341391.
- 5. Change the "Initial seed value" to the desired value. Disable the multiple run, and change the breaker time to 0.5024 s.

🖳 Statistical breaker			×
Configuration V			
🗒 2↓ 🕾 📑 🛷 炳			
~	General		
	Name		
	Initial seed value	645341391	
	Minimum time delay	0	
	Maximum time delay	0.004	
	Number of standard deviations in the interval	1	
~	Outputs		
	Seed value used	Seedvalue	

Figure 8: Configuration of Statistical Breaker

~	Real Variables		
	Value for Variable 1 When Disabled	0.5024	
	Value for Variable 2 When Disabled	0.0	
	Value for Variable 3 When Disabled	0.0	
	Value for Variable 4 When Disabled	0.0	
	Value for Variable 5 When Disabled	0.0	
	Value for Variable 6 When Disabled	0.0	

Figure 9: Variable 1 Default Value

Figure 10 compares the original maximum voltage identified by the optimum run with the re-created maximum voltage using seed value.

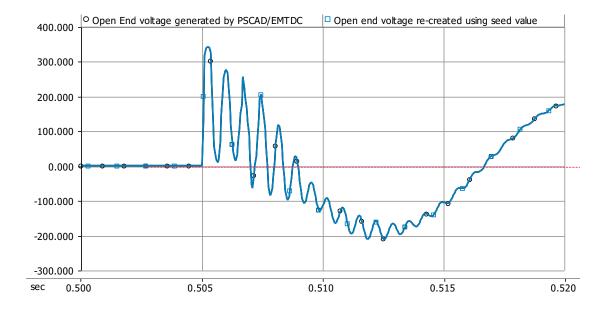


Figure 10: Ea original Waveform and Ea Waveform for Seedvalue is 645341391

2.2. Example 2: Line Re-energizing

The purpose of this example is to demonstrate the impact of breaker closing time when energizing a transmission line with a different length as shown in <u>Figure 11</u>.

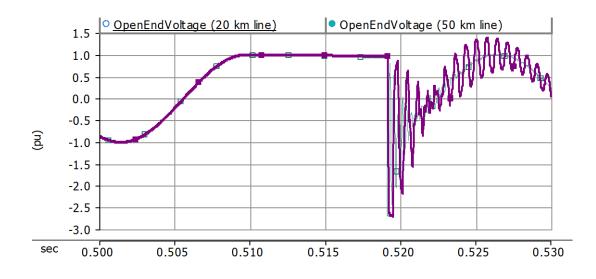


Figure 11: Open end voltage waveform for 20km and 50km transmission line

DOCUMENT TRACKING

Rev.	Description	Date
0	Initial	30/Jan/2020

Copyright © 2020 Manitoba Hydro International Ltd. All Rights Reserved.