

RLC DC Cable Measurement

For a single cable, eliminate all outer layers of cable (sheath, armour etc). This can be done by enabling conductor elimination for all layers as follows.

Configuration		
til: 21 🕾 🕄		
4 General		
Cable number	1	
Placement in relation to ground plane	Underground	
Depth below ground surface	1 [m]	
Height above ground surface	2.0 [m]	
Horizontal translation from centre	0 [m] 0	
Layer configuration	C1 I1 C2 I2 C3 I3	
Layer thickness is specified as	radial from centre	
Detailed graphic labels	show	
 Ideal Cross-Bonding (Transposition) 	1	
Ideal cross-bonding is	disabled	
Cross-bonding group	1	
Conducting core is	excluded	
1st conducting layer is	included	
2nd conducting layer is	excluded	
3rd conducting layer is	excluded	
4 Labeling		
Core conductor	Conductor	
1st conducting layer	Sheath	
2nd conducting layer	Armour	
3rd conducting layer	Outside Cond.	
 Mathematical Conductor Elimination 		
Conductors to eliminate	all concentric	
1st concentric conductor	retain	
2nd concentric conductor	retain	
Tod an analysis and then	an halo	
Conductors to eliminate Choose which conducting layers to eliminate	t (if any).	

In the OUTPUT page, you can see the RXB data (Z=R+Xj, Y=jB) SERIES IMPEDANCE MATRIX (Z) [ohms/m]:

0.166890964E-03,0.885137674E-04

SHUNT ADMITTANCE MATRIX (Y) [mhos/m]: 0.00000000E+00,0.146925120E-06

For two dc cables, eliminate all conductive layers as described above and then solve cable. This will create 2*2 matrix. For RXB data for ground and conductor modes can be computed manually using transformation matrix described in help (see Modal Analysis in help)