

MANITOBA HVDC RESEARCH CENTRE, a Division of Manitoba Hydro International Ltd.

Renewable Device Modeling and **Harmonic Model Derivation using** PSCADTM/EMTDCTM

October 19, 2017

Presented by: Kumara Mudunkotuwa

Mathias Pielahn

Introduction

Renewable Device Modeling

- Electromagnetic transient (EMT) vs. RMS simulations
- Generic and detailed vendor models
 - Focus on: Type 3 & Type 4 wind turbines, PV inverters
 - Switching and average models
- Collector network aggregation

- Methodology of harmonic injection
- Interpretation and implication of results

Why EMT models are important in studies involving renewables?

- RMS modeling does not represent the network dynamics.
 - Any phenomena caused by converter interaction with the network is not captured accurately.
- EMT modeling is able to capture these network dynamics accurately.
 - SSR, SSCI, fault ride through in weak grid, harmonic resonances in the collector network, etc.

RMS

- Assume quasi-steady state
- Network transients neglected
- Fundamental phasor solution
- Positive sequence
- Large network possible

EMT

- Consider differential equations
- Numerical integration substitution
- Upper freq. depends on simulation time step $(0 \sim MHz)$

Example:

- EMT solutions may have DC offset other high frequency transients
- RMS has the steady state solution of each instant →Quasi-steady state

Example:

- EMT is able to capture the dynamics during a fault accurately.
- RMS results follow the fundamental.

Generic vs. Detailed Vendor Models

Generic vs. Detailed Vendor Models

Generic model

- Does not represent any particular vendor model/equipment.
- Will provide typical or generic type of response.
- Used in system planning studies (for which individual model details are not crucial), or when modeling nearby wind/PV farms that don't require particular detail.

Vendor model

- Represents particular details of equipment.
- Often these details are intellectual property.
 - Thus, models are 'black-boxed' to hide sensitive algorithms.
- Used in interconnection studies and studies involving grid code compliance, SSR/SSCI, tuning controllers etc.

Vendor model

- Different vendor models have significantly different dynamics responses.
- Pre- and post-fault steady state responses may be similar.
- Therefore, the appropriate vendor models are always recommended to be used in detailed EMT studies.

Average Model vs. Detailed Model

Average model vs. Detailed model

- Average model uses reference waveform in source. Fine details of switching events are lost
- Detailed model uses full PWM signal in in source. Fine details of switching events are accurately modelled.
- Note: time step in detailed model must be small enough.

Generic Renewable Models

- Discuss the following generic models:
 - Type 3 wind turbine.
 - Type 4 wind turbine.
 - PV inverter.

Type 3 Turbine

EMT Type 3 Turbine

- Induction generator
- Back-to-back converter
 - Average or detailed
- Control system
 - V_{DC}
 - Active and reactive power
- Aerodynamic and drive train
 - 2-mass system
- Pitch and torque/power control
- Wind farm controller (slow)
 - P_{ref} and Q_{ref}.

Type 4 wind farm

- PM synchronous generator
- Direct back-to-back converter
 - Average or detailed

Blades

- MSC can be replaced by current source (if electro-mechanical behavior is not required. E.g. wind variation tests)
- Not shown: pitch/torque controller, wind farm controller

Synchronous Step-up generator transformer Line side Machine side converter converter (LSC) (MSC)

PV inverter

Similar to type 4 converter (from AC onwards)

MPPT

MPPT

Controls

including

PLL

Measurements

I, V, P, Q

Farm Aggregation

Wind farm/PV Solar farm aggregation

- Computationally demanding simulate full collector network with many detailed models. Answer: aggregate.
- Steps to aggregate:
 - 1. Make equivalent line section
 - 2. Scale current *N* times

- Several methods make equivalent line section
 - Ref. 1: Equivalencing the collector system of a large wind power plant, Muljadi et. al
 - Ref. 2: Efficient EMT modeling approach to studying resonance phenomenon in PV and wind energy systems, Pielahn, Mudunkotuwa, Ranaweera, Muthumuni

Parallel Processing - ENI

- If full details of feeder branches are needed -> can't aggregate
 - May have to run all or a large part of the collector network
- Allocate each converter model of the collector network onto a separate core on machine (Electric Network Interface)
- Also possible to split the simulation onto several computers separated by distance

Note: ENI does not cause inaccuracies or time step delays.

- What is a harmonic model?
 - Harmonic model represent the converter as a Thévenin equivalent source.
 - Thévenin equivalence is calculated for different harmonics.

- Why we need harmonic model?
 - To calculate the total harmonic distortion of a renewable farm at the point of interconnection (POI)
 - Utility interest to know the impact upon interconnection of renewable farm.
 - Harmonic model used in harmonic analysis tools.

Generally the harmonic model is a table. E.g.

Harmonic order	V _{thev}	Ph(V _{thev})	Z _{thev}	Ph(Z _{thev})
1	X	X	X	X
2	X	X	X	X
	•••	•••		
19	X	X	X	X
20	X	X	X	X

- Converter model is black boxed, provided by vendor
- Only known quantities are the terminal harmonic measurements: Im(f), Vm(f)
- Question: how to determine Thévenin equivalence using only these terminal values?
- Question: Im(f) and Vm(f) are very small -> How to measure them?

- Answer: External excitations are needed
 - Harmonic voltage source is connected in series *Vi(f)*
- The magnitude of Vi(f) are determined experimentally. Typically they should be a few % of the fundamental grid voltage.

- To calculate the impedance Z(f) at the terminal, inject excitation voltages at the same frequency.
- Measure terminal voltage and current. Repeat with a slightly modified voltage injection
 - $V_1(f)$, $I_1(f)$, $V_2(f)$, $I_2(f)$ -> phasors

$$Z_{th}(f) = \frac{V_2(f) - V_1(f)}{I_2(f) - I_1(f)}$$

$$V_{th}(f) = -I_1(f) \cdot Z_{th}(f) + V_1(f)$$

Typical results...

Typical results...

- Practical application has more than one equivalent harmonic model (collector network).
- The fundamental Thévenin angle of the harmonic model is in reference to the phase angle of converter terminal voltage. If voltage angle changes by $\Delta \varphi$, then fundamental Thévenin angle must change by the same amount. (maintain power flow)
- E.g. if the fundamental voltage angle is changed by an amount $\Delta \varphi$, then the angles of the harmonic model must be shifted by

$$\angle V_{th_shifted}(f) = \angle V_{th}(f) + n \cdot \Delta \varphi$$

where n is the harmonic number.

- What about dynamic resistance?
- $Z(f) = \frac{v(f)}{i(f)}$
- The real part of the Thévenin impedance is called *Dynamic Resistance*.
- Used to screen for negative frequency region in which converter amplifies harmonics.
- Predominant in type 3 turbines.

Dynamic Resistance

Thank you